Preparing scenarios
To perform a simulation study with the NCC
package, we
first create a data frame with the desired scenarios that contains all
the parameters needed for data generation and analysis.
In this simple example, we consider a platform trial with 4
experimental treatment arms entering sequentially, where the null
hypothesis holds for all experimental arms. We vary the strength and
pattern of the time trend (parameters lambda
and
trend
) in order to investigate their impact on the type I
error, bias and MSE of the treatment effect estimates.
sim_scenarios <- data.frame(num_arms = 4,
n_arm = 250,
d1 = 250*0,
d2 = 250*1,
d3 = 250*2,
d4 = 250*3,
period_blocks = 2,
mu0 = 0,
sigma = 1,
theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0,
lambda0 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda1 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda2 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda3 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda4 = rep(seq(-0.15, 0.15, length.out = 9), 2),
trend = c(rep("linear", 9), rep("stepwise_2", 9)),
alpha = 0.025,
ncc = TRUE)
head(sim_scenarios)
num_arms n_arm d1 d2 d3 d4 period_blocks mu0 sigma theta1 theta2 theta3
1 4 250 0 250 500 750 2 0 1 0 0 0
2 4 250 0 250 500 750 2 0 1 0 0 0
3 4 250 0 250 500 750 2 0 1 0 0 0
4 4 250 0 250 500 750 2 0 1 0 0 0
5 4 250 0 250 500 750 2 0 1 0 0 0
6 4 250 0 250 500 750 2 0 1 0 0 0
theta4 lambda0 lambda1 lambda2 lambda3 lambda4 trend alpha ncc
1 0 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 linear 0.025 TRUE
2 0 -0.1125 -0.1125 -0.1125 -0.1125 -0.1125 linear 0.025 TRUE
3 0 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 linear 0.025 TRUE
4 0 -0.0375 -0.0375 -0.0375 -0.0375 -0.0375 linear 0.025 TRUE
5 0 0.0000 0.0000 0.0000 0.0000 0.0000 linear 0.025 TRUE
6 0 0.0375 0.0375 0.0375 0.0375 0.0375 linear 0.025 TRUE
Running simulations
We use the function sim_study_par()
to perform a
simulation study with the created scenarios. Here we evaluate the 4th
experimental treatment arm using the regression model with period
adjustment, as well as the separate and pooled analyses. Each scenario
will be replicated 1000 times.
set.seed(1234)
sim_results <- sim_study_par(nsim = 1000, scenarios = sim_scenarios, arms = 4,
models = c("fixmodel", "sepmodel", "poolmodel"),
endpoint = "cont")
[1] "Starting the simulations. 18 scenarios will be simulated. Starting time: 2023-02-19 14:24:09"
[1] "Scenario 1/18 done. Time: 2023-02-19 14:24:21"
[1] "Scenario 2/18 done. Time: 2023-02-19 14:24:26"
[1] "Scenario 3/18 done. Time: 2023-02-19 14:24:32"
[1] "Scenario 4/18 done. Time: 2023-02-19 14:24:37"
[1] "Scenario 5/18 done. Time: 2023-02-19 14:24:42"
[1] "Scenario 6/18 done. Time: 2023-02-19 14:24:47"
[1] "Scenario 7/18 done. Time: 2023-02-19 14:24:53"
[1] "Scenario 8/18 done. Time: 2023-02-19 14:24:58"
[1] "Scenario 9/18 done. Time: 2023-02-19 14:25:03"
[1] "Scenario 10/18 done. Time: 2023-02-19 14:25:08"
[1] "Scenario 11/18 done. Time: 2023-02-19 14:25:13"
[1] "Scenario 12/18 done. Time: 2023-02-19 14:25:19"
[1] "Scenario 13/18 done. Time: 2023-02-19 14:25:24"
[1] "Scenario 14/18 done. Time: 2023-02-19 14:25:30"
[1] "Scenario 15/18 done. Time: 2023-02-19 14:25:36"
[1] "Scenario 16/18 done. Time: 2023-02-19 14:25:41"
[1] "Scenario 17/18 done. Time: 2023-02-19 14:25:47"
[1] "Scenario 18/18 done. Time: 2023-02-19 14:25:52"
The function reports the system time after each scenario finishes in order to track the progress of the simulations.
Simulation results
The resulting data frame contains the considered scenarios, as well as simulation results - probability to reject the null hypothesis, bias and MSE of the treatment effect estimates.
head(sim_results)
num_arms n_arm d1 d2 d3 d4 period_blocks mu0 sigma theta1 theta2 theta3
1 4 250 0 250 500 750 2 0 1 0 0 0
2 4 250 0 250 500 750 2 0 1 0 0 0
3 4 250 0 250 500 750 2 0 1 0 0 0
4 4 250 0 250 500 750 2 0 1 0 0 0
5 4 250 0 250 500 750 2 0 1 0 0 0
6 4 250 0 250 500 750 2 0 1 0 0 0
theta4 lambda0 lambda1 lambda2 lambda3 lambda4 trend alpha ncc study_arm
1 0 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 linear 0.025 TRUE 4
2 0 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 linear 0.025 TRUE 4
3 0 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 linear 0.025 TRUE 4
4 0 -0.1125 -0.1125 -0.1125 -0.1125 -0.1125 linear 0.025 TRUE 4
5 0 -0.1125 -0.1125 -0.1125 -0.1125 -0.1125 linear 0.025 TRUE 4
6 0 -0.1125 -0.1125 -0.1125 -0.1125 -0.1125 linear 0.025 TRUE 4
model reject_h0 bias MSE failed nsim
1 fixmodel 0.030 -0.0005506988 0.007717052 0 1000
2 poolmodel 0.007 -0.0438708399 0.008220890 0 1000
3 sepmodel 0.027 0.0005236461 0.008487647 0 1000
4 fixmodel 0.020 -0.0001912505 0.006601056 0 1000
5 poolmodel 0.008 -0.0332907139 0.006741297 0 1000
6 sepmodel 0.020 -0.0002745666 0.007570587 0 1000
We can now visualize the performance of the considered analysis methods with respect to the strength and pattern of the time trend.
Type I error
ggplot(sim_results, aes(x=lambda0, y=reject_h0, color=model)) +
geom_point() +
geom_line() +
facet_grid(~ trend) +
geom_hline(aes(yintercept = 0.025), linetype = "dotted") +
labs(x="Strength of time trend", y="Type I error", color="Analysis approach") +
theme_bw()
Bias
ggplot(sim_results, aes(x=lambda0, y=bias, color=model)) +
geom_point() +
geom_line() +
facet_grid(~ trend) +
geom_hline(aes(yintercept = 0), linetype = "dotted") +
labs(x="Strength of time trend", y="Bias", color="Analysis approach") +
theme_bw()
MSE
ggplot(sim_results, aes(x=lambda0, y=MSE, color=model)) +
geom_point() +
geom_line() +
facet_grid(~ trend) +
labs(x="Strength of time trend", y="MSE", color="Analysis approach") +
theme_bw()