This function performs analysis using a generalized additive model taking into account all trial data until the arm under study leaves the trial and smoothing over the patient entry index.
Usage
gam_cont(
data,
arm,
alpha = 0.025,
ci = FALSE,
smoothing_basis = "tp",
basis_dim = -1,
gam_method = "GCV.Cp",
check = TRUE,
...
)
Arguments
- data
Data frame with trial data, e.g. result from the
datasim_cont()
function. Must contain columns named 'treatment', 'response', 'period' and 'j'.- arm
Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
- alpha
Double. Significance level (one-sided). Default=0.025.
- ci
Logical. Indicates whether confidence intervals should be computed. Default=FALSE.
- smoothing_basis
String indicating the (penalized) smoothing basis to use. Default="tp" for thin plate regression spline. Available strings are 'tp', 'ts', 'ds', 'cr', 'cs', 'cc', 'sos', 'ps', 'cp', 're', 'mrf', 'gp', and 'so'. For more information see https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/smooth.terms.html.
- basis_dim
Integer. The dimension of the basis used to represent the smooth term. The default depends on the number of variables that the smooth is a function of. Default=-1. For more information see the description of the parameter 'k' in https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/s.html.
- gam_method
String indicating the smoothing parameter estimation method. Default="GCV.Cp". Available strings are 'GCV.Cp', 'GACV.Cp', 'REML', 'P-REML', 'ML', and 'P-ML'. For more information see the description of the parameter 'method' in https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gam.html.
- check
Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
- ...
Further arguments passed by wrapper functions when running simulations.
Value
List containing the following elements regarding the results of comparing arm
to control:
p-val
- p-value (one-sided)treat_effect
- estimated treatment effect in terms of the difference in meanslower_ci
- lower limit of the (1-2*alpha
)*100% confidence intervalupper_ci
- upper limit of the (1-2*alpha
)*100% confidence intervalreject_h0
- indicator of whether the null hypothesis was rejected or not (p_val
<alpha
)model
- fitted model
Examples
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
gam_cont(data = trial_data, arm = 3, ci = TRUE)
#> $p_val
#> [1] 5.3954e-05
#>
#> $treat_effect
#> [1] 0.5093378
#>
#> $lower_ci
#> [1] 0.2529761
#>
#> $upper_ci
#> [1] 0.7656996
#>
#> $reject_h0
#> [1] TRUE
#>
#> $model
#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> response ~ as.factor(treatment) + s(j, bs = smoothing_basis,
#> k = basis_dim)
#>
#> Estimated degrees of freedom:
#> 1 total = 5
#>
#> GCV score: 0.963449
#>